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Accurate particle size measurement is essential for R&D, enabling materials researchers and engineers in manu-
facturing and quality control to effectively analyze, predict, and control material behavior. The size and distribution 
of particles such as grains in construction and functional materials or active material particles in batteries strongly 
influence the properties of materials and components.

In the analysis of loose particles such as powders in additive manufacturing, powder metallurgy, or even in the 
pharmaceutical industry, laser diffraction is a widely used method for size and size-distribution measurements.  
This method provides insights into particle size classes and the size distributions, but usually does not provide 
geometric features of individual particles. Laser diffraction is also not suitable for grain size analysis in bulk 
polycrystalline materials. The quantitative analysis of images from light optical microscopes (LOM) or scanning 
electron microscopes (SEM) is a commonly used method to evaluate the geometric features of particles and to 
analyze grain size, shape, and distribution in polycrystalline materials. The challenge, however, is the segmentation 
process and especially the separation of individual particles or touching grains.

The software ZEN core from ZEISS, where ZEN stands for ZEISS Efficient Navigation, offers various types of 
segmentation methods for all kinds of images. The three most common types will be compared in this paper 
using the example of a lithium-ion battery anode. The three types are a global thresholding method, machine-
learning-based segmentation utilizing the module ZEN Intellesis, and a cloud-trained deep-neural-network instance 
segmentation method using the platform ZEISS arivis Cloud and the model import into ZEN core.

Introduction 
Analyzing the phase fractions and the particle size distribution 
in lithium-ion battery electrodes is crucial for both R&D as 
well as manufacturing and quality control, as it directly affects 
battery performance, stability, and lifetime.

Phase composition determines how effectively lithium ions 
can be stored and transported within the electrode, affecting 
capacity and charge/discharge rates. Particle size distribution 
affects the surface area available for reactions as well as 
electrode porosity, which influences the rate of ion diffusion and 
overall battery efficiency. Consistent and optimal particle size 
also minimizes degradation, improving battery life and safety. 
Therefore, understanding these parameters helps to optimize 
electrode design for enhanced battery performance and ensures 
product consistency during manufacturing. This applies to both 
the anode and cathode sides of lithium-ion batteries. 

The anode material investigated in this paper is composed of 
graphite particles and finely dispersed silicon particles. Silicon 
particles are added to anodes to increase the energy density of 
batteries because silicon has a much higher theoretical lithium 

storage capacity than graphite. However, silicon also expands 
and contracts much more than graphite during charging and 
discharging of the battery, causing mechanical stress and 
degradation. To address this, silicon is blended with graphite 
to balance high capacity and structural integrity and stability. 
The combination enhances the overall capacity of the battery 
while maintaining the durability required for most commercial 
applications.

Figure 1 shows a top-view SEM image of the anode surface 
in backscattered electron contrast visualizing the difference 
in chemical composition as well as the morphology of the 
particles. Silicon looks bright, the dark areas represent porosity 
and space between the particles, and graphite looks gray with 
small white speckles on the surface. These white speckles are a 
feature of the graphite particles and do not belong to the silicon 
phase in the sample.

The analysis of this particular sample aimed to determine the 
graphite and silicon fractions as well as the size distribution of 
both phases.
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Segmentation Methods
For the measurement of geometric features, each particle has 
to be segmented as a separate object, whereas for the analysis 
of the phase fraction each image pixel belonging to a specific 
phase can be segmented together. For this purpose, a first 
differentiation has to be made between semantic and instance 
segmentation.

Figure 2: Left: Semantic segmentation, assigning each image pixel to a phase, 
differentiating between apples and pears. Right: Instance segmentation, 
assigning objects to phases, distinguishing individual apples from individual 
pears.

Figure 2 shows a schematic drawing of semantic and instance 
segmentation. While semantic segmentation classifies each pixel 
of the image into a specific class (or phase such as apples and 
pears) without differentiating between objects of the same type, 
instance segmentation is a more advanced type of segmentation 
that not only classifies each pixel but also differentiates between 
instances of the same class (or phase). In semantic segmentation 
each pixel belonging to a class is labeled the same, regardless 
of how many individual objects of that class are present in the 
image. In instance segmentation, however, individual objects of 
the same class are labeled separately. For the schematic drawing 
in Figure 2, this means semantic segmentation sees only apples 
and pears whereas instance segmentation sees three apples and 
three pears.

Figure 3: Artificial representation of the anode surface: white particles represent 
silicon, dark areas represent pores, and gray particles with white speckles 
represent graphite.

Threshold Segmentation
Threshold segmentation is a simple but effective technique 
for labeling pixels or objects in an image based on the pixel 
intensity values. The process involves selecting different 
threshold values for each class, and then classifying each pixel in 
the image into a class based on whether the intensity is above 
or below the set threshold.

Threshold segmentation works particularly well in images 
where different objects have different levels of brightness and 
contrast. These image types are mainly black-and-white or 
grayscale images. While this method is computationally efficient, 
it struggles with more complex images that may have intensity 
gradients or overlapping intensity values in individual objects.

100 µm

Figure 1: SEM overview of the anode surface in backscattered electron contrast 
(BSE). White particles represent silicon, gray particles correspond to graphite, 
and black areas indicate porosity or spaces between particles. The image has a 
pixel size of 279 nm/pixel and a width of 203 µm. 

20 µm

The three segmentation methods presented in this paper will 
show two simple semantic methods that require a secondary 
step to separate objects and one more advanced instance 
segmentation method that does not require a post-processing 
step. The three individual methods are described below.

To better describe the three segmentation methods, an artificial 
representation of the anode microstructure is used. This artificial 
representation is shown in Figure 3.
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Figure 4: Principle of threshold segmentation using an artificial anode image 
as an example. Left panel shows an artificial grayscale image. The center panel 
shows the image histogram with threshold settings. The right panel shows the 
threshold segmentation result.

Figure 4 represents the principle of threshold segmentation. The 
input image (Figure 4 left) is the artificial image of the anode. It 
is an 8-bit grayscale image with a total of 256 gray values (0 = 
black, 255 = white). Figure 4 center shows the histogram (gray 
value distribution) of the input image as well as three threshold 
regions representing the three phases in the image. The dark 
background phase is covered by a threshold from 0 to 7, the 
gray graphite particles are covered by a threshold from 10 to 
100, and the light silicon phase is covered by a threshold from 
180 to 255. With this setting, each pixel in the image is assigned 
to one of the three phases and is labeled with the corresponding 
color. Note that the bright speckles on the graphite particles are 
assigned to the silicon phase because their intensity level is in 
the silicon threshold (Figure 4 right).

ZEN Intellesis Segmentation
ZEN Intellesis is a machine-learning-based segmentation tool 
in the ZEN ecosystem. It leverages machine learning algorithms 
to segment images based on models trained on user labeled 
data. The user can train the software to recognize and 
segment-specific features in microscopic images (LOM, SEM, 
X-ray imaging systems). Once trained, ZEN Intellesis enables 
automated segmentation tasks for high-throughput and 
reproducible image analysis. Image segmentation with ZEN 
Intellesis is a semantic pixel-based segmentation, where each 
pixel in the image has to be assigned to a class.

Figure 5: ZEN Intellesis training – training image loaded, labeling of the 
individual phases.

Figure 6: ZEN Intellesis training result: Each pixel in the image is segmented 
according to the feature set learned in the training process.

Figure 5 shows the training process in ZEN Intellesis. First, a set 
of training images is loaded into the training environment. The 
more training images with different imaging conditions, the 
more robust the model will be. Once the images are loaded, the 
user can create as many individual classes as are present in the 
image and start labeling the pixels belonging to each class. The 
labeling process basically involves painting the pixels belonging 
to a phase with a brush tool. The size of the brush tool can 
be adjusted according to the user’s needs. In a subsequent 
step, the user can select from a range of feature sets, starting 
with 25 basic features up to 256 deep features. Note that a 
higher number of features will use more computational time 
and power. The feature set should be chosen according to the 
complexity of the image in a trial-and-error process. The final 
step is to click the “Train & Segment” button. Training then 
begins based on the labeled pixels.

Figure 6 shows the training result for the ZEN Intellesis model. 
Each pixel in the image is assigned to a class that was found 
to best match the trained model based on the selected feature 
set. Note that the bright speckles on the graphite particles are 
assigned to the graphite and not to the silicon phase. If the user 
is satisfied with the training results and each pixel is assigned 
to the correct class, the model can be saved for further use in 
the ZEN core image-analysis workflow. If some pixels are still 
assigned to the wrong class, the user can continue the labeling 
process and perform more training steps. With each training 
step and more labeling (and even more training images), the 
model learns more and becomes more robust. It should be 
noted, however, that if the labeling results are not accurate 
or the training images become too complex, the results may 
become worse again. ZEN Intellesis training is a process of trial 
and repeat until the results meet the user’s expectations. In the 
case of the artificial image, a short training with a basic set of 
features already shows very accurate segmentation results.
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arivis Cloud Instance Segmentation
ZEISS arivis Cloud is a powerful platform for training custom 
deep-learning models for image segmentation. It provides 
intuitive tools for annotating images and supports both semantic 
and instance segmentation. This study leverages its instance 
segmentation capabilities to accurately segment particles 
as individual objects, using deep learning to tackle complex 
segmentation tasks. Models trained with arivis Cloud can be 
downloaded into the ZEN ecosystem to utilize powerful image-
analysis modules (e.g., in ZEN core) to perform image analyses 
locally. For optimal performance during local analysis, a robust 
workstation and Docker software are recommended.

Figure 7: arivis Cloud training – training image loaded, number of classes set, 
labeling of individual objects.

Figure 8: arivis Cloud training result – particles with satisfactory segmentation 
and separation.

Figure 7 shows the labeling process using arivis Cloud. Similar to 
the process in ZEN Intellesis, a set of training images is uploaded 
to the cloud. After uploading, the classes to be analyzed are 
created. For this segmentation technique, only the classes 
that are to be analyzed need to be created and labeled. The 
labeling process then works like the one in ZEN Intellesis with an 
adjustable brush tool or a polygon tool. When labeling instance 
segmentation for example, it is crucial to precisely trace the 
individual objects with the brush or polygon tool, but objects 
can also overlap. For arivis Cloud training, more labels mean 
a more robust model. It is therefore recommended to label at 
least 50 objects per class.

After labeling, the training process begins and runs unsuper-
vised on the platform. Once training is complete, the platform 
notifies the user via email, and the evaluation of the training 
results can proceed. If the predictions from the initial training 
are unsatisfactory, additional labels can be added, and the 
training process can be continued. When the results meet 
expectations, the model can be downloaded and imported into 
the ZEN ecosystem for further analysis. Figure 8 illustrates the 
training results, showing predictions of the identified objects. 
Note that each object is segmented individually, including 
the bright speckles on the graphite particles, which are 
incorporated into the predicted graphite objects.

Object Separation
As mentioned above, thresholding and ZEN Intellesis 
segmentation are both semantic segmentation techniques 
where each pixel in the image is assigned to a phase and not to 
an individual object. This problem, along with the fact that some 
individual particles touch or overlap each other, inevitably leads 
to merging of particles in the segmentation results. To illustrate 
this issue, Figure 9a and 9b show the results from threshold 
segmentation (Figure 9a) and ZEN Intellesis segmentation 
(Figure 9b) where the graphite particles are randomly colored to 
visualize the merging of some individual particles.
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Object Separation
As mentioned above, thresholding and ZEN Intellesis 
segmentation are both semantic segmentation techniques 
where each pixel in the image is assigned to a phase and not 
to an individual object. This problem, along with the fact 
that some individual particles touch or overlap each other, 
inevitably leads to merging of particles in the segmentation 
results. To illustrate this issue, Figure 9a and 9b show the results 
from threshold segmentation (Figure 9a) and ZEN Intellesis 
segmentation (Figure 9b) where the graphite particles are 
randomly colored to visualize the merging of some individual 
particles.

Figure 9a: Threshold initial 
segmentation – graphite particles 
with random coloring, many particles 
segmented as one.

Figure 9b: Intellesis initial 
segmentation – graphite particles 
with random coloring, many particles 
segmented as one.

Figure 9c: Threshold segmentation 
with Morphology separation filter 
– only some graphite particles 
separated, some particles split into 
multiple.

Figure 9d: Intellesis segmentation 
with Morphology separation filter – 
only some graphite particles 
separated, some particles split into 
multiple. multiple.

To separate particles merged due to limitations in the semantic 
segmentation techniques, a post-processing step can be applied 
to reseparate the particles. The ZEN ecosystem provides two 
separation methods for this purpose, namely the Morphology 
and the Watershed function.

The Morphology function uses binary image operations to first 
reduce the objects until they separate and then enlarges the 
objects again, making sure they do not merge again.
Figures 9c and 9d show the results of the Morphology function 
for the threshold segmentation (Figure 9c) and the ZEN Intellesis 
segmentation (Figure 9d). Compared to Figures 9a and 9b, 
there are more separated graphite particles in the image, but 
still many particles are merged together. Also, in the threshold 
segmentation, the Morphology function results in the splitting 
of objects that are one.

The Watershed function separates objects that have 
approximately the same shape. The result is two objects/
shapes separated by a 1-pixel boundary, while the rest of the 
perimeter remains unchanged. The Watershed method almost 
always results in the separation of elongated objects. This can 
be clearly seen in Figure 9e with the threshold segmentation 
results. Here, the bright speckles on the graphite particles 
are assigned to the silicon phase and thus create holes in the 
graphite particles, which the Watershed function interprets 
as individual shapes and separates. For the ZEN Intellesis 
segmentation (Figure 9f), the Watershed function also leads 
to the splitting of individual graphite particles, but the overall 
result is much better compared to the threshold segmentation.

Results
To show the differences of the three presented segmentation 
techniques on real-world samples, an image analysis was 
performed on a 1.2 × 0.8 mm² area of the anode shown in the 
first section. The analyzed image was acquired in a ZEISS FE-SEM 
with backscattered electron contrast. The resolution of the 
image was 279 nm/Pixel. Figure 10 shows a direct comparison 
of the three segmentation techniques after image analysis in the 
ZEN core Multi-Image View.

Figure 9e: Threshold segmentation 
with Watershed separation filter – 
individual graphite particles split into 
multiple.

Figure 9d: Intellesis segmentation 
with Watershed separation filter – 
some particles separated correctly, 
individual graphite particles split into 
multiple.

100 µm 100 µm

100 µm 100 µm

100 µm 100 µm
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Figure 10: ZEN core Multi-Image View of the results of the three segmentation 
techniques.

Table 1: Measurement parameters

From left to right (threshold segmentation, ZEN Intellesis, 
arivis Cloud instance segmentation) the improvement of the 
segmentation performance is clearly visible. The threshold 
segmentation shows all bright speckles as part of the silicon 
phase and a large number of falsely split graphite particles. 
The ZEN Intellesis segmentation shows a better representation 
of the real microstructure with the bright speckles on the 
graphite being segmented as part of the graphite, but there are 
still graphite particles falsely split into multiple objects. Only 
the instance segmentation results from the arivis Cloud show 
no false splitting and all bright speckles on the graphite are 
counted as part of the graphite.

For the image analysis performed in ZEN core, the analyzed 
parameters for each object and the whole class (field 
parameters) are presented in Table 1. Note that for the size 
distribution analysis, objects were filtered out if “is frame 
touched” was true for an object. The reason for this is that cut 
objects have to be measured for the phase fraction but cannot 
be measured for the size distribution.

Object parameters Field parameters

Area Regions count

Diameter (equivalent circular diameter) Regions count per mm²

FeretMax Regions area

FeretMin Frame area

FeretRatio Regions area percentage

Is frame touched

First, the phase fraction and the particle/object count of each 
phase were analyzed. The results are shown in Figure 11. While 
the phase fraction does not show a significant difference 
between the three segmentation methods (Figure 11 left), the 
number of particles per phase depends very strongly on the 
segmentation method. For example, the high number of silicon 
particles in the threshold segmentation is due to the bright 
speckles on the graphite particles being segmented as silicon. 
Since these particles are very small, this false segmentation does 
not weigh too heavily on the phase fraction.

Figure 11: Analyses of the field parameters phase fraction (area percentage) and 
particle count; strong influence of segmentation method on particle count.
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The number-weighted equivalent circular diameter (ECD) analysis of the graphite particles in Figure 12 also shows the strong 
influence of the segmentation technique on the results. All three segmentation techniques reveal a large number of small graphite 
particles. Only the arivis Cloud instance segmentation shows an almost Gaussian distribution of the particle size classes, but 
still presents a distinct peak of small particles. For the graphite class, this difference results from the object separation functions 
performed on the two semantic segmentation methods, where many graphite particles are split into a number of smaller objects. 
The peak of small particles in the arivis Cloud segmentation will be discussed in the following section.

Figure 13: Graphite particle size distribution analysis with 100 ECD size classes for arivis Cloud segmentation.

Figure 12: Comparison of the number-weighted analysis of the equivalent circular diameter (ECD) of the graphite particles.

Refining Analysis Results
As shown in the previous section, the two semantic segmentation techniques in combination with a separation function do not lead 
to viable results with regard to particle size distribution. The analysis from the arivis Cloud segmentation also shows a significant 
peak in small graphite particles, although it does not have the problem of false object splitting.

As a first step to look deeper into the analysis results and the possible cause of the large number of small objects, the size class 
range was increased from 10 to 100, resulting in a more detailed view of the size distribution of the graphite particles. Figure 13 
shows the number and area-weighted results of the arivis Cloud segmentation results with 100 ECD size classes.
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The higher-resolution particle size distribution with 100 ECD size classes reveals an almost bimodal size distribution of the graphite 
particles with nearly 6% of the particles being in the <0.3 µm ECD size class. This is not visible in the area-weighted analysis because 
even a high number of very small particles does occupy much area. Given the high number of small particles in the <0.3 µm class, 
and knowing that the image pixel size is 0.279 µm/Pixel, it must be assumed that these particles are 1-Pixel objects resulting from a 
segmentation error.

With this in mind, and the rule of thumb that an object to be measured has to be represented by at least 10 pixels to minimize the 
measurement error (10-Pixel-Rule), the raw data from the ZEN core image-analysis workflow needs to be filtered and replotted again 
with the smallest class starting at 3 µm ECD. The fitted analysis results are displayed in Figure 14.

Figure 14: Graphite particle size distribution analysis with 100 ECD size classes and filtered for objects >3 µm ECD for arivis Cloud segmentation.

The final result shows a wide but homogeneous distribution of graphite particle sizes with no outliers. The results obtained can now 
be used for quality control and or process development.

Conclusion
This paper shows that high-performance instance segmentation using arivis Cloud is a highly suitable tool for the grain or particle 
size analysis of microscopy images. With an appropriately trained model, it can segment individual objects, grains, and particles 
easily and reproducibly, without the need for object separation functions that are difficult to adapt. This approach can also be used 
for all kinds of grain size analyses in material science that were previously not possible due to limitations in segmentation techniques.
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